150k views
3 votes
Find the line integral of f(x, y) = y e^X^2 along the curve r(t) = 3t i - 4t J, -2 lessthanorequalto t lessthanorequalto -1. The integral of f is (Type an exact answer.)

1 Answer

4 votes


\vec r(t)=3t\,\vec\imath-4t\,\vec\jmath


\implies\left\|(\mathrm d\vec r(t))/(\mathrm dt)\right\|=\|3\,\vec\imath-4\,\vec\jmath\|=√(3^2+(-4)^2)=5

The line integral of
f(x,y) along the curve
C parameterized by
\vec r(t) is


\displaystyle\int_Cf(x,y)\,\mathrm ds=\int_(-2)^(-1)f(3t,-4t)\left\|(\mathrm d\vec r(t))/(\mathrm dt)\right\|\,\mathrm dt=-20\int_(-2)^(-1)te^(9t^2)\,\mathrm dt

Substitute
u=9t^2 so that
\mathrm du=18t\,\mathrm dt. Then


\displaystyle\int_Cf(x,y)\,\mathrm dS=-(20)/(18)\int_(36)^9e^u\,\mathrm du=\frac{10}9\int_9^(36)e^u\,\mathrm du=\boxed{\frac{10}9(e^(36)-e^9)}

User Jasonpenny
by
7.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.