Answer:
![y(t)=e^(.428 t)(8cos\0.285 t+29.55sin\0.285t)](https://img.qammunity.org/2020/formulas/mathematics/college/c14qxvr7nl13z8ymfbj9v5174s3sdcyohf.png)
Explanation:
Given:
49y''+42y'+13y=0 ,y(0)=8,y'(0)=5
Lets take a y''+by'+c=0 is a differential equation.
So auxiliary equation will be
So according to given problem our auxiliary equation will be
Then the roots of above equation
![m=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/college/hx1vj6q0t4n0xxrvwfvsunf5y8naj7niie.png)
But D in the above question is negative so the roots of equation will be imaginary (
).
By solving m= -0.428+0.285i , -0.428-0.285i,
m=
![\alpha \pm \beta](https://img.qammunity.org/2020/formulas/mathematics/college/9orfufwlokvxtal0owfss0kr8lv13l4aec.png)
So
![y(t)=e^(\alpha t)(C_1cos\beta t+C_2sin\beta t)](https://img.qammunity.org/2020/formulas/mathematics/college/ns75zpvgxi8v384gu0novdshkdwg9fkoim.png)
![y(t)=e^(-0.428 t)(C_1cos\0.285 t+C_2sin\0.285t)](https://img.qammunity.org/2020/formulas/mathematics/college/df44aym9ww7bu7pw3c2uqmpfulphyke5vl.png)
So now by using giving condition we will find
![C_1=8 ,C_2= 29.55](https://img.qammunity.org/2020/formulas/mathematics/college/zemimbbe0y1g4bbaqjeltfshga3b2r81t0.png)
So