Answer:
![\large\boxed{y-0=(2)/(7)(x+3)}\\\downarrow\\\boxed{y=(2)/(7)x+(6)/(7)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cydfcubmvoc3ls8ncqvz4rgmb9nc4gjce2.png)
Explanation:
The point-slope form of an equation of a line:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lwv5ftdd36i4idvu50qxfdgwxhdby4wlt5.png)
m - slopei
The formula of a slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fc06wy5n2hf2a0hmyba6df4ibmxk1cn53a.png)
======================================
We have the points (-3, 0) and (4, 2).
Substitute:
![m=(2-0)/(4-(-3))=(2)/(7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dh45wsj5aqkfx7424dx9qdkoen15eela2g.png)
Put the value of the slope and the coordinates of the point (-3, 0) to the equation:
![y-0=(2)/(7)(x-(-3))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/18cfsmnuw800wzibxseps6kdep26cm5y0e.png)
![y-0=(2)/(7)(x+3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g4zmbb00zv8cgb59m6rdbgbaozutti145d.png)
Converto to the slope-intercept form (y = mx + b):
![y=(2)/(7)x+(6)/(7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ru3ieqrdx5ri8d6t2cqqq5llmtyfwyhg45.png)