Answer:
(-2,2)
Explanation:
Let's find the answer.
Because a tangent line for a parabola function is equal to 0 only at its vertex then:
![f(x)=(x+2)^(2)+2](https://img.qammunity.org/2020/formulas/mathematics/college/srutz32vwkuk7cpx2cbk2pn9815421ziuy.png)
![f'(x)=2*(x+2)](https://img.qammunity.org/2020/formulas/mathematics/college/x303t3xgbntaibckjrnnovjshmp864m5zo.png)
so then:
when
![0=2x+4](https://img.qammunity.org/2020/formulas/mathematics/college/ztwfh7v5pfxt84bymjj5pap5x0xq2s2i5q.png)
![-2=x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s55pso1uaq50iz3cax8j830jwlemwef85z.png)
For x=-2 f(x) is:
![f(x)=(x+2)^(2)+2](https://img.qammunity.org/2020/formulas/mathematics/college/srutz32vwkuk7cpx2cbk2pn9815421ziuy.png)
![f(1)=(-2+2)^(2)+2](https://img.qammunity.org/2020/formulas/mathematics/college/89cw3xlvuq19dt4609qnl8x5n8ms2n93g9.png)
![f(x)=2](https://img.qammunity.org/2020/formulas/mathematics/college/u9r8g7lt5x1jt6ydhlag86866574yb5hp1.png)
In conclusion, the vertex of the given parabola is (-2,2), so the answer is C. Although in your answer is reported as (-2.2) but I think was a typing mistake.