44.9k views
1 vote
Find the area of the part of the paraboloid z = 9 - x^2 - y^2 that lies above the xy-plane.

1 Answer

4 votes

Parameterize this surface (call it
S) by


\vec r(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+(9-u^2)\,\vec k

with
0\le u\le3 and
0\le v\le2\pi. Take the normal vector to
S to be


\vec r_u*\vec r_v=2u^2\cos v\,\vec\imath+2u^2\sin v\,\vec\jmath+u\,\vec k

Then the area of
S is


\displaystyle\iint_S\mathrm dA=\iint_S\|\vec r_u*\vec r_v\|\,\mathrm du\,\mathrm dv


=\displaystyle\int_0^(2\pi)\int_0^3u√(1+4u^2)\,\mathrm du\,\mathrm dv


=\displaystyle2\pi\int_0^3u√(1+4u^2)\,\mathrm du=\boxed{\frac{37√(37)-1}6\pi}

User Shivaji Varma
by
4.7k points