209k views
4 votes
Find all the solutions for the equation:

2y2 dx - (x+y)2 dy=0

(Introduction to Differential Equations)

User Httpete
by
6.4k points

1 Answer

7 votes


2y^2\,\mathrm dx-(x+y)^2\,\mathrm dy=0

Divide both sides by
x^2\,\mathrm dx to get


2\left(\frac yx\right)^2-\left(1+\frac yx\right)^2(\mathrm dy)/(\mathrm dx)=0


(\mathrm dy)/(\mathrm dx)=(2\left(\frac yx\right)^2)/(\left(1+\frac yx\right)^2)

Substitute
v(x)=\frac{y(x)}x, so that
(\mathrm dv(x))/(\mathrm dx)=(x(\mathrm dy(x))/(\mathrm dx)-y(x))/(x^2). Then


x(\mathrm dv)/(\mathrm dx)+v=(2v^2)/((1+v)^2)


x(\mathrm dv)/(\mathrm dx)=(2v^2-v(1+v)^2)/((1+v)^2)


x(\mathrm dv)/(\mathrm dx)=-(v(1+v^2))/((1+v)^2)

The remaining ODE is separable. Separating the variables gives


((1+v)^2)/(v(1+v^2))\,\mathrm dv=-\frac{\mathrm dx}x

Integrate both sides. On the left, split up the integrand into partial fractions.


((1+v)^2)/(v(1+v^2))=(v^2+2v+1)/(v(v^2+1))=\frac av+(bv+c)/(v^2+1)


\implies v^2+2v+1=a(v^2+1)+(bv+c)v


\implies v^2+2v+1=(a+b)v^2+cv+a


\implies a=1,b=0,c=2

Then


\displaystyle\int((1+v)^2)/(v(1+v^2))\,\mathrm dv=\int\left(\frac1v+\frac2{v^2+1}\right)\,\mathrm dv=\ln|v|+2\tan^(-1)v

On the right, we have


\displaystyle-\int\frac{\mathrm dx}x=-\ln|x|+C

Solving for
v(x) explicitly is unlikely to succeed, so we leave the solution in implicit form,


\ln|v(x)|+2\tan^(-1)v(x)=-\ln|x|+C

and finally solve in terms of
y(x) by replacing
v(x)=\frac{y(x)}x:


\ln\left|\frac{y(x)}x\right|+2\tan^(-1)\frac{y(x)}x=-\ln|x|+C


\ln|y(x)|-\ln|x|+2\tan^(-1)\frac{y(x)}x=-\ln|x|+C


\boxed{\ln|y(x)|+2\tan^(-1)\frac{y(x)}x=C}

User Jortizromo
by
5.8k points