220k views
0 votes
Consider the given polynomial P(x)=30 29x - 7x^2+5x^3 + x* .4 List all possible rational roots, and factor the given polynomial

1 Answer

7 votes

Answer:

x=2, x=1, x=-5 and x=-3.

Explanation:

Let's find the answer using the following method.

Original equation:


30 -29x - 7x^2+5x^3 + x^4=0

Notice that the constant term is 30, which can be divided by:

1, -1, 2, -2, 3, -3, 5, -5, 6, -6, 10, -10, 15, -15, 30, -30.

Trying this divisors can allowed us to find one or even two initial roots, so:

Trying first x=1, we have:


30 -29x - 7x^2+5x^3 + x^4=0


30 -29*(1) - 7*(1)^2+5*(1)^3 + (1)^4=0


30 -29 - 7+5 + 1=0


0=0 notice that x=1 is a root.

Let's try now with x=2, we have:


30 -29x - 7x^2+5x^3 + x^4=0


30 -29*(2) - 7*(2)^2+5*(2)^3 + (2)^4=0


30 -58 - 28+40 + 16=0


0=0 notice that x=2 is also a root.

So the original equation can be written as:


30 -29x - 7x^2+5x^3 + x^4=(x-2)*(x-1)*p(x) so:


(30 -29x - 7x^2+5x^3 + x^4)/((x-2)*(x-1))=p(x)


(30 -29x - 7x^2+5x^3 + x^4)/(x^2 - 3 x + 2)=p(x)

Doing the math, we have:


(30 -29x - 7x^2+5x^3 + x^4)-(x^2)*(x^2 - 3 x + 2)=


(30 -29x - 7x^2+5x^3 + x^4)-(x^4 - 3 x^3 + 2x^2)=


(30 -29x - 9x^2+8x^3) now:


(30 -29x - 9x^2+8x^3)-(8x)*(x^2 - 3 x + 2)=


(30 -29x - 9x^2+8x^3)-(8x^3 - 24 x^2 + 16x)=


(30 -45x +15x^2) now:


(30 -45x +15x^2)-(15)*(x^2 - 3 x + 2)=


(30 -45x +15x^2)-(15x^2 - 45 x + 30)=0

which means:


(30 -29x - 7x^2+5x^3 + x^4)/((x-2)*(x-1))=p(x)


(30 -29x - 7x^2+5x^3 + x^4)/((x-2)*(x-1))=(x^2+8x+15)

Using the equation for calculating the roots of a quadratic equation we have:

quadratic equation:
x^2+8x+15


x=(-b\±√(b^2-4ac) )/(2a)


x=(-8\±√((8)^2-(4*1*15)) )/(2*1)


x=(-8\±√((8)^2-(4*1*15)) )/(2*1)


x=(-8\±\2)/(2)


x1=-5


x2=-3

So finally we have:


30 -29x - 7x^2+5x^3 + x^4=(x-2)*(x-1)*(x+5)*(x+3)

In conclusion the roots are: x=2, x=1, x=-5 and x=-3.

User Eric Breyer
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories