71.8k views
3 votes
Given: A = (4, 0) B = (-6, 10) Unit vector in the direction of AB

User Naixx
by
7.9k points

1 Answer

6 votes


\bf \begin{cases} A=(4,0)\\ B=(-6,10) \end{cases}\qquad B-A\implies (-6-4~~,~~10-0)\implies \stackrel{\textit{component form}}{(-10,10)=AB} \\\\[-0.35em] ~\dotfill\\\\ ||AB||\implies √((-10)^2+(10)^2)\implies √(100+100)\implies √(2(100)) \\\\\\ √(2(10^2))\implies 10√(2) \\\\[-0.35em] ~\dotfill


\bf \stackrel{\textit{unit vector}}{\cfrac{AB}AB}\implies \cfrac{(-10,10)}{10√(2)}\implies \left( \cfrac{\stackrel{-1}{~~\begin{matrix} -10 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{~~\begin{matrix} 10 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~√(2)}~,~\cfrac{~~\begin{matrix} 10 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{~~\begin{matrix} 10 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~√(2)} \right) \implies \left(\cfrac{-1}{√(2)}~,~\cfrac{1}{√(2)} \right)


\bf \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{and rationalizing the denominator}}{\left( -\cfrac{√(2)}{2}~,~\cfrac{√(2)}{2} \right)}~\hfill

User Prescott
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories