102k views
3 votes
Evalute costheta if sintheta = (sqrt5)/3

2 Answers

2 votes

Answer:


\large\boxed{\cos\theta=\pm(2)/(3)}

Explanation:

Use
\sin^2x+\cos^2x=1.

We have


\sin\theta=(\sqrt5)/(3)

Substitute:


\left((\sqrt5)/(3)\right)^2+\cos^2\theta=1\qquad\text{use}\ \left((a)/(b)\right)^n=(a^n)/(b^n)\\\\((\sqrt5)^2)/(3^2)+\cos^2\theta=1\qquad\text{use}\ (√(a))^2=a\\\\(5)/(9)+\cos^2\theta=1\qquad\text{subtract}\ (5)/(9)\ \text{from both sides}\\\\\cos^2\theta=(9)/(9)-(5)/(9)\\\\\cos^2\theta=(4)/(9)\to \cos\theta=\pm\sqrt{(4)/(9)}\\\\\cos\theta=\pm(\sqrt4)/(\sqrt9)\\\\\cos\theta=\pm(2)/(3)

User BernhardS
by
5.2k points
5 votes

Answer:
cos(\theta)=\±(2)/(3)

Explanation:

In this case we know that:


sin(\theta) = (√(5))/(3)

To find the value of
cos(\theta) we use the following trigonometric identity


cos^2(\theta)=1-sin^2(\theta)

So


sin^2(\theta) = ((√(5))/(3))^2

Therefore


cos^2(\theta)=1-((√(5))/(3))^2


cos^2(\theta)=1-(5)/(9)


cos^2(\theta)=(4)/(9)


cos(\theta)=\±\sqrt{(4)/(9)}


cos(\theta)=\±(2)/(3)

User Jonathan Rys
by
5.0k points