Answer:
![f (-2) =-(8)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/tonuv2v52mfz0ys1n4on9nhk0iouzh3pbl.png)
![f (4) =(4)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/3bbo162p7e8wio4ewx488n7usa5nah9lo0.png)
![f (1) = - 4](https://img.qammunity.org/2020/formulas/mathematics/college/zcubn18hw9ie779828i7ojrvy3woqu96yp.png)
Explanation:
For this case it has a piecewise function composed of two functions.
To evaluate the piecewise function observe the condition.
when
![x \\eq 1](https://img.qammunity.org/2020/formulas/mathematics/college/4bwd2c1s6h72oulkbz722ao5nidw8892mc.png)
when
![x = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f94zyyoq5pguxleii2lctl83hdz0s0bme0.png)
We start by evaluating
, note that
. Then we use the quadratic function:
![f (-2) = (1)/(3)(-2) ^ 2 -4 = -(8)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/tfv3i62vdx0jq218ltu6y803i6rpwbdi8y.png)
Now we evaluate
note that
. Then we use the quadratic function:
![f (4) = (1)/(3)(4) ^ 2 -4 = (4)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/ninhx5usk3idpnmy22vk3r3wn6k0bq4dmo.png)
Finally we evaluate
As
then
![f (1) = - 4](https://img.qammunity.org/2020/formulas/mathematics/college/zcubn18hw9ie779828i7ojrvy3woqu96yp.png)