Answer:
![574.62\ in^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cs3ploo17t6ucxdy9ucr8nro3epxu5zz0c.png)
Explanation:
First we calculate the volume of the cylinder.
![V=\pi r^2*l](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wfk0e8j9mdscuqw447fcjhujwshbk9o7pf.png)
Where r is the radius and l is the length of the cylinder.
We know that:
![r = (diameter)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d6wjr8weuwur4nnngxfnjhn4ewuxlc0pco.png)
![r = (4)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tktldm7qlxkfrv6tyqmjxxozjs44q7hw6h.png)
![r = 2\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7q06qcwd5bki90t54nrxlz4q0lsrmqs9xk.png)
Then:
![V=3.14* 2^2*48](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pjpj9bnfm65cuthaw4qlky68d0czygiosr.png)
![V=602.88\ in^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iisaysvd211jti5xxxmsvbxiz7xg25ddvo.png)
Assuming that the cannon balls are spherical then the volume of the 2 spheres is:
![V=2*(4)/(3)\pi r^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9zxoopy1fqo12e0cnqke69nr6a2l08tw4b.png)
![V=2*(4)/(3)(3.14)((3)/(2))^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/faommwbj5y5v6kkld2048y6pld7pkaacc1.png)
![V=2*(4)/(3)(3.14)((3)/(2))^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/faommwbj5y5v6kkld2048y6pld7pkaacc1.png)
![V=28.26\ in^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wtd4l3craya2wkqybbkp0tbcurb35j0wv5.png)
So the space left inside the cannon is
![V=602.88\ in^3 - 28.26\ in^3\\\\V=574.62\ in^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/plclx9m896zyd4g4ua5vfj8qexvf0x8wzb.png)