180k views
5 votes
Find the derivative of the function at P 0 in the direction of A. ​f(x,y,z) = 3 e^x cos(yz)​, P0 (0, 0, 0), A = - i + 2 j + 3k

User Chris Cap
by
5.5k points

1 Answer

7 votes

The derivative of
f(x,y,z) at a point
p_0=(x_0,y_0,z_0) in the direction of a vector
\vec a=a_x\,\vec\imath+a_y\,\vec\jmath+a_z\,\vec k is


\\abla f(x_0,y_0,z_0)\cdot(\vec a)/(\|\vec a\|)

We have


f(x,y,z)=3e^x\cos(yz)\implies\\abla f(x,y,z)=3e^x\cos(yz)\,\vec\imath-3ze^x\sin(yz)\,\vec\jmath-3ye^x\sin(yz)\,\vec k

and


\vec a=-\vec\imath+2\,\vec\jmath+3\,\vec k\implies\|\vec a\|=√((-1)^2+2^2+3^2)=√(14)

Then the derivative at
p_0 in the direction of
\vec a is


3\,\vec\imath\cdot(-\vec\imath+2\,\vec\jmath+3\,\vec k)/(√(14))=-\frac3{√(14)}

User Raffian
by
5.4k points