Answer:
The formula used for Pythagoras Theorem.
(Hypotenuse)² = (Base)² + (Perpendicular)²
We have
PQ = 48, QR = 64 and PR = ?
⇒ (PR)² = (PQ)² + (QR)²
⇒ (PR)² = (48)² + (64)²
⇒ (PR)² = 2304 - 4096 = 64 00
⇒ PR = 80
The six trigonometric functions we have are:
- sine = sin θ = Perpendicular ÷ hypotenuse = PQ ÷ PR = 48 ÷ 80 = 0.6
- cosine = cos θ = Base ÷ hypotenuse = QR ÷ PR = 64 ÷ 80 = 0.8
- tangent = tan θ = Perpendicular ÷ Base = PQ ÷ QR = 48 ÷ 64 = 0.75
- cosecant = cosec θ = hypotenuse ÷ Perpendicular = PR ÷ PQ = 80 ÷ 48 = 1.67
- secant = sec θ = hypotenuse ÷ Base = PR ÷ QR = 80 ÷ 64 = 1.25
- cotangent = cot θ = Base ÷ Perpendicular = QR ÷ PQ = 64 ÷ 48 = 1.34