184k views
2 votes
Solve log525 = x 2 1/2 -2

2 Answers

3 votes

Answer:

x = 2

Step-by-step:

Log5 (25)= x

Write in exponential form

Log5 (5^2)= x

Simplify the expression

2= x

Swap sides

x = 2

User Ucsunil
by
8.7k points
2 votes

Answer:

x = 1/2

Explanation:

The equation in correct format is:


log_(5)(25)=x

We have to solve this logarithmic equation to find the value of x. This can be done by using the rules of logarithm i.e the power rule and same base rule shown below:


log(a)^(b)=b * log(a)\\\\log_(a)(a)=1

Using these rules on our equation, we get:


log_(5)(25)=x\\\\log_(5)(5^{(1)/(2) })=x\\\\ (1)/(2) log_(5)(5)=x\\\\ (1)/(2) (1)=x\\\\ x=(1)/(2)

Thus the value of x would be 1/2

User Daniel Kristensen
by
7.6k points

Related questions

asked Apr 25, 2019 158k views
KimHafr asked Apr 25, 2019
by KimHafr
8.4k points
2 answers
4 votes
158k views
1 answer
10 votes
90.4k views