Hello!
The answer is:
The equation of the line that passes through the points (-2,1) and (6,-5) is:
![y=-(3)/(4)x-(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/302d5wczhf7x2zhv2x5mmt54u6jz87o8lb.png)
Why?
To solve the problem, we can use the following formula:
We have that:
![y-y_1=(y_2-y_1)/(x_2-x_1)*(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/college/yv6q3vlrn1zjedserexwej2c0u0i0x88er.png)
So, using the given points (-2,1) and (6,-5), we have:
![y-1=(-5-1)/(6-(-2))*(x-(-2))](https://img.qammunity.org/2020/formulas/mathematics/college/t13bkaobnsrkzg03f2wmjz0ed8l8r5c4ut.png)
![y-1=(-6)/(6+2)*(x+2)](https://img.qammunity.org/2020/formulas/mathematics/college/c9aiwa8c8aiawkprol2a9qd54zlpqc4ljs.png)
![y-1=(-6)/(8)*(x+2)](https://img.qammunity.org/2020/formulas/mathematics/college/qwe7kof8omrgiyfw8l8vtwb1mbdhr6z8u5.png)
![y-1=-(3)/(4)*(x+2)](https://img.qammunity.org/2020/formulas/mathematics/college/p9f5clftvmxtj0rbluzyyo9rzxblk4lvnq.png)
![y=-(3)/(4)*(x+2)+1](https://img.qammunity.org/2020/formulas/mathematics/college/8syh7s7hau1hfy8jzmv4ci7kfcu4xxis7n.png)
![y=-(3)/(4)*(x)-(3)/(4)**(2)+1](https://img.qammunity.org/2020/formulas/mathematics/college/gjszew8xgoy29wo132ekep4838u5wjah68.png)
![y=-(3)/(4)(x)-(6)/(4))+1](https://img.qammunity.org/2020/formulas/mathematics/college/rh05h97449aqn4n4ak45k93heew30vhk1x.png)
![y=-(3)/(4)(x)-(3)/(2))+1](https://img.qammunity.org/2020/formulas/mathematics/college/cxb940l0cvblwfjng2dvbbkswenb2h1i5i.png)
![y=-(3)/(4)x-(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/302d5wczhf7x2zhv2x5mmt54u6jz87o8lb.png)
Hence, we have that the equation of the line that passes through the points (-2,1) and (6,-5) is:
![y=-(3)/(4)x-(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/302d5wczhf7x2zhv2x5mmt54u6jz87o8lb.png)
Have a nice day!