17,379 views
2 votes
2 votes
2(2x² + xy-z²)-xy. when x=2, y = (-1) and z = (-2)​

User Sarah B
by
2.7k points

2 Answers

13 votes
13 votes

Answer:


\red{22}

Explanation:

Given that,

x = 2

y = ( -1 )

z = ( -2 )

To find the value of given expression, you have to replace x, y and z with 2, -1 and -2 respectively.

Let us solve it now.


2(2x² + xy-z²)-xy \\ 2((2 * 2 ^(2)) + (2 * - 1 ) - ( { - 2}^(2))) - (2 * - 1 )

You have to solve this equation according to the BODMAS theorem.

That is,

B = brackets

O = of

D = division

M = multiplication

A = addition

S = subtraction


2((2 * 2 ^(2)) + (2 * - 1 ) - ( { - 2}^(2))) - (2 * - 1 ) \\ 2((2 * 4) - 2 - ( - 4)) - ( - 2) \\ 2(8 - 2 + 4) + 2 \\ 2(6 + 4) + 2 \\ 2 * 10 + 2 \\ 20 + 2 \\ 22

User Noitidart
by
2.8k points
12 votes
12 votes

Answer:
\Large\boxed{6}

Explanation:

Given expression


2(2x^2+xy-z^2)-xy

Given information


x=2\\


y=-1


z=-2

Substitute values into the given expression


2[2(2)^2+(2)(-1)-(-2)^2]-(2)(-1)

Simplify the exponents


2[2(4)+(2)(-1)-(4)]-(2)(-1)

Simplify by multiplication


2[8-2-4]+2

Simplify values in the parenthesis


2[6-4]+2


2[2]+2

Simplify by multiplication


4+2


\Large\boxed{6}

Hope this helps!! :)

Please let me know if you have any questions

User Melessa
by
3.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.