46.5k views
3 votes
Evaluate the function rule for the given value. f(x) = 3^x for x = –5

User Dean Clark
by
8.6k points

2 Answers

4 votes

For this case we have the following function:


f (x) = 3 ^ x

We must evaluate the function for
x = -5

So, we have:


f (-5) = 3 ^ {-5}

By definition of power properties it is fulfilled that:


a ^ {- 1} = \frac {1} {a ^ 1} = \frac {1} {a}

Thus:


f (-5) = \frac {1} {3 ^ 5} = \frac {1} {3 * 3 * 3 * 3 * 3} = \frac {1} {243}

Answer:


\frac {1} {243}

User Abahet
by
7.7k points
7 votes

Answer:

f(-5) = 1/ 243

Explanation:

f(x) = 3^x

Let x=-5

f(-5) = 3^-5

Since the exponent is negative, it will move to the denominator

f(-5) = 1/3^5

f(-5) = 1/ 243

User Bbusdriver
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories