Answer:
1.5 square units.
Explanation:
In order to find the area we can construct a triangle by calculating the sides length using the distance equation:
![distance = \sqrt{(x2-x1)^(2) +(y2-y1)^(2) +(z2-z1)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/4l2d9vrt1yn7594nebxz0qen258noq7ii5.png)
between points (1,0,0) and (0,2,0) the distance is:
![distance = \sqrt{(0-1)^(2) +(2-0)^(2) +(0-0)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/c58z9omnb8hs4n442wh7tvq7n64322lkuj.png)
![distance = \sqrt{(-1)^(2) +2^(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/5jg0ufs2p9dfiz0stpyg2aw60xcujw8f3t.png)
![distance = √(5)](https://img.qammunity.org/2020/formulas/mathematics/college/e16pc3qqo1ruokibow3lev91dpwcg0519v.png)
![distance = 2.2361](https://img.qammunity.org/2020/formulas/mathematics/college/uryu0ybbesrr7yt2xxapthz9oex5of45ak.png)
between points (1,0,0) and (0,0,1) the distance is:
![distance = \sqrt{(0-1)^(2) +(0-0)^(2) +(1-0)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/j4m668d89jhqd4pxm5f3kyducscbagsxrn.png)
![distance = \sqrt{(-1)^(2) +1^(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/wzne7p8pdleqc10t9170xonlxy4wib6hwp.png)
![distance = √(2)](https://img.qammunity.org/2020/formulas/mathematics/college/vgp93pzn2xvcwl61dhp87lcpzzo32p24hw.png)
![distance = 1.4142](https://img.qammunity.org/2020/formulas/mathematics/college/bxmnoyg46t1dqdbsizmftufhf8nljen5u9.png)
between points (0,2,0) and (0,0,1) the distance is:
![distance = \sqrt{(0-0)^(2) +(0-2)^(2) +(1-0)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/u9ykz225z00traptyfrq1pulxj9d5ejw9w.png)
![distance = \sqrt{(-2)^(2) +1^(2)}](https://img.qammunity.org/2020/formulas/mathematics/college/llxyerygpo2xzshjrqd9ztq4rcbx4uhmj7.png)
![distance = √(5)](https://img.qammunity.org/2020/formulas/mathematics/college/e16pc3qqo1ruokibow3lev91dpwcg0519v.png)
![distance = 2.2361](https://img.qammunity.org/2020/formulas/mathematics/college/uryu0ybbesrr7yt2xxapthz9oex5of45ak.png)
Because we have an isosceles triangle (two sides with equal length) then we can use the following formula for the area:
where 'b' is the unique side with different lenght, so:
![area=\frac{1.4142*\sqrt{2.2361^(2)-1.4142^(2)/4}}{2}](https://img.qammunity.org/2020/formulas/mathematics/college/1yvnqca69df3tly584cphbyqclmy40uqh8.png)
![area=1.5](https://img.qammunity.org/2020/formulas/mathematics/college/9thqzbiq8ghmwq5im15mud440hmascieip.png)
In conclusion the are is 1.5 square units.