111k views
1 vote
Find the roots of the parabola given by the following equation.

2x2+ 5x - 9 = 2x

1 Answer

5 votes

Answer:

x=-3 or x=3/2

Explanation:

We are given the following equation:

2x^2+5x-9=2x

We are asked to find the roots. That means just solve it for x.

2x^2+5x-9=2x

Subtract 2x on both sides:

2x^2+3x-9=0

Let's see if we can put this in factored form.

Compare

2x^2+3x-9=0

and

ax^2+bx+c=0.

a=2, b=3 , c=-9

We have to find two numbers that multiply to be ac and add up to be b.

ac=-18

b=3

What are two numbers that multiply to be -18 and add to be 3?

Say -3 and 6.

So we are going to factor 2x^2-3x+6x-9=0

The first two terms have a common factor of x.

The last two terms have a common factor of 3.

2x^2-3x+6x-9=0

x(2x-3)+3(2x-3)=0

Now we can factor the (x-3) out of those 2 terms there since they share that common factor:

(x+3)(2x-3)=0

(x+3)(2x-3)=0 implies x+3=0 or 2x-3=0.

So we must solve x+3=0 and 2x-3=0

x+3=0

Subtract 3 on both sides:

x=-3

2x-3=0

Add 3 on both sides:

2x=3

Divide both sides by 2:

x=3/2

The solutions are x=3 or x=-3/2

User Maugch
by
9.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories