Answer:
Rounding to nearest hundredths gives us r=0.06.
So r is about 6%.
Explanation:
So we are given:
![A=P(1+r)^t](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mx7m27cl3u5582uaxzowc38y4tzzboesz2.png)
where
![A=2300](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g3f9es5emt6v14dsmi9j4nywlnujl5n7yh.png)
![P=1600](https://img.qammunity.org/2020/formulas/mathematics/middle-school/965lmh0mwplulbqovq7myhfr4hwov1qe5p.png)
.
![A=P(1+r)^t](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mx7m27cl3u5582uaxzowc38y4tzzboesz2.png)
![2300=1600(1+r)^6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5gpu1nrd3y5kaunukdxyka58e386otgxag.png)
Divide both sides by 1600:
![(2300)/(1600)=(1+r)^6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/26u5yidgc1wy3493nbp9icmg64drjqkvst.png)
Simplify:
![(23)/(16)=(1+r)^6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3wb68na1c88l3pb1qi7j13oyh8idn1l0dz.png)
Take the 6th root of both sides:
![\sqrt[6]{(23)/(16)}=1+r](https://img.qammunity.org/2020/formulas/mathematics/middle-school/24ca590p5krwg00tzu6rgzdsr1vc82oa55.png)
Subtract 1 on both sides:
![\sqrt[6]{(23)/(16)}-1=r](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ovgx728nrgid8qj5s6px9k466kdqeo0qci.png)
So the exact solution is
![r=\sqrt[6]{(23)/(16)}-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/juka2q2fzryx73sg4593fo5iu2cyyag53g.png)
Most likely we are asked to round to a certain place value.
I'm going to put my value for r into my calculator.
r=0.062350864
Rounding to nearest hundredths gives us r=0.06.