6.5k views
1 vote
Prove that (1 + cot θ -cosec θ)(1 + tan θ + sec θ) = 2

User Eyevan
by
5.2k points

1 Answer

7 votes

Answer:


(1+ (cos \alpha )/(sin \alpha ) - (1)/( \sin( \alpha ) ) )(1+ ( \sin( \alpha ) )/( \cos( \alpha ) )+ (1)/( \cos( \alpha ) ) )


(( \sin( \alpha + \cos( \alpha ) -1)/( \sin( \alpha ) )) ( ( \cos( \alpha + \sin( \alpha )+1 ) )/( cos( \alpha ) ) ) \\


(( \sin( \alpha + \cos( \alpha )^2)-1^2 ) )/( \sin( \alpha \cos( \alpha ) ) )


(sin^2@+cos^2@+2sin@cos@ -1)/(sin@cos@ ) \\


(1+2sin@cos@-1)/(sin@ cos@) \\


(2sin@cos@)/(sin@cos@) \\


2 \\

hence proved

User Semytech
by
5.9k points