18.5k views
5 votes
travelling with velocity 1) Calculate the energy E (in eV) and direction vector Ω for a neutron v= 2132 +3300+154 k [m/sec]. (3 points) ^ ^

User Kkaefer
by
8.1k points

1 Answer

5 votes

Answer:


K.E =0.081eV


\vec{\Omega}=(0.54\hat{i}+0.83\hat{j}+0.039\hat{k}

Step-by-step explanation:

Given:

Velocity vector
\vec{v}=(2132\hat{i}+3300\hat{j}+154\hat{k})m/s

the mass of neutron, m = 1.67 × 10⁻²⁷ kg

Now,

the kinetic energy (K.E) is given as:


K.E =(1)/(2)mv^2


\vec{v}^2 = \vec{v}.\vec{v}

or


\vec{v}^2 = (2132\hat{i}+3300\hat{j}+154\hat{k}).(2132\hat{i}+3300\hat{j}+154\hat{k})

or


\vec{v}^2 =15.45* 10^6 m^2/s^2

substituting the values in the K.E equation


K.E =(1)/(2)1.67* 10^(-27)kg* 15.45* 10^6 m^2/s^2

or


K.E =1.2989* 10^(-20)J

also

1J = 6.242 × 10¹⁸ eV

thus,


K.E =1.2989* 10^(-20)* 6.242* 10^(18)


K.E =0.081eV

Now, the direction vector
\vec{\Omega}


\vec{\Omega}=\frac{\vec{v}}{\left | \vec{v} \right |}

or


\vec{\Omega}=\frac{(2132\hat{i}+3300\hat{j}+154\hat{k})}{\left |\sqrt{((2132\hat{i})^2+(3300\hat{j})^2+(154\hat{k}))^2} \right |}

or


\vec{\Omega}=\frac{(2132\hat{i}+3300\hat{j}+154\hat{k})}{3930.65}

or


\vec{\Omega}=0.54\hat{i}+0.83\hat{j}+0.039\hat{k}

User Marconius
by
8.4k points