Answer:
The magnitude of the angular momentum of the cylinder and the rotational kinetic energy of the cylinder are 0.0205 Kgm²/s and 0.01317 J
Step-by-step explanation:
Given that,
Moment of inertia = 0.016 kg m²
Radius = 6.0
Linear speed = 7.7 m/s
We need to calculate the angular momentum
Using formula of angular momentum
![L=I\omega](https://img.qammunity.org/2020/formulas/physics/college/p3mzdr50d87077dazhan8nsycc03bmphm7.png)
Where, L = angular momentum
I = moment of inertia
=angular velocity
Put the value into the formula
![L=0.016*(7.7)/(6.0)](https://img.qammunity.org/2020/formulas/physics/college/8qbrnhplgt852o90gdlnsgaf3axclc1o8l.png)
![L=0.0205\ Kg m^2/s](https://img.qammunity.org/2020/formulas/physics/college/j8254vaga4bbpe0ulquffdsripkovyvzin.png)
We need to calculate the rotational kinetic energy of the cylinder
Using formula of Rotational kinetic energy
![K.E=(1)/(2)* I\omega^2](https://img.qammunity.org/2020/formulas/physics/college/c07pke58s8c3esfh9u7tnj860qen7c5ub9.png)
![K.E= (1)/(2)* I*((v)/(r))^2](https://img.qammunity.org/2020/formulas/physics/college/8tp1ikslyq2g59aocvwjn1c5pe17y4c7x7.png)
![K.E= (1)/(2)*0.016*((7.7)/(6.0))^2](https://img.qammunity.org/2020/formulas/physics/college/facat2bn67cqxs3v9cknkvqi17b8d6i1ry.png)
![K.E=0.01317\ J](https://img.qammunity.org/2020/formulas/physics/college/rhbh7skggclx1gl71gpeg5o76jv5jt598b.png)
Hence, The magnitude of the angular momentum of the cylinder and the rotational kinetic energy of the cylinder are 0.0205 Kg m²/s and 0.01317 J