58.5k views
1 vote
Solve the Differential equation (x^2 + y^2) dx + (x^2 - xy) dy = 0

User Z Star
by
7.3k points

1 Answer

2 votes

Answer:


(y)/(x)-2ln((y)/(x)+1)=lnx+C

Explanation:

Given differential equation,


(x^2 + y^2) dx + (x^2 - xy) dy = 0


\implies (dy)/(dx)=-(x^2 + y^2)/(x^2 - xy)----(1)

Let y = vx

Differentiating with respect to x,


(dy)/(dx)=v+x(dv)/(dx)

From equation (1),


v+x(dv)/(dx)=-(x^2 + (vx)^2)/(x^2 - x(vx))


v+x(dv)/(dx)=-(x^2 + v^2x^2)/(x^2 - vx^2)


v+x(dv)/(dx)=-(1 + v^2)/(1 - v)


v+x(dv)/(dx)=(1 + v^2)/(v-1)


x(dv)/(dx)=(1 + v^2)/(v-1)-v


x(dv)/(dx)=(1 + v^2-v^2+v)/(v-1)


x(dv)/(dx)=(v+1)/(v-1)


(v-1)/(v+1)dv=(1)/(x)dx

Integrating both sides,


\int{(v-1)/(v+1)}dv=\int{(1)/(x)}dx


\int{(v-1+1-1)/(v+1)}dv=lnx + C


\int{1-(2)/(v+1)}dv=lnx + C


v-2ln(v+1)=lnx+C

Now, y = vx ⇒ v = y/x


\implies (y)/(x)-2ln((y)/(x)+1)=lnx+C

User Iskar Jarak
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories