Answer:
The given expression is divisible by 3 for all natural values of x.
Explanation:
The given expression is
![2^(2x+1)+1](https://img.qammunity.org/2020/formulas/mathematics/college/twmj6ni0pgtspzd0v3fbjjyq7fv9gzp2ox.png)
For x=1,
![2^(2(1)+1)+1=2^(3)+18+1=9](https://img.qammunity.org/2020/formulas/mathematics/college/6kzwr7e92pydfqm4x77ah5tkerx0ty5kbt.png)
9 is divisible by 3. So, the given statement is true for x=1.
Assumed that the given statement is true for n=k.
![2^(2k+1)+1](https://img.qammunity.org/2020/formulas/mathematics/college/wqwz9p64unc467gnhysr7nd0ewhvpkz27c.png)
This expression is divisible by 3. So,
.... (1)
For x=k+1
![2^(2(k+1)+1)+1](https://img.qammunity.org/2020/formulas/mathematics/college/65bofoh6s5oo0mv06ktw91i5tgxypbjm2n.png)
![2^(2k+2+1)+1](https://img.qammunity.org/2020/formulas/mathematics/college/rlegoj4pulc0mt65qt9inzos0lfr1ykwwd.png)
![2^((2k+1)+2)+1](https://img.qammunity.org/2020/formulas/mathematics/college/h8p8lv5u9666n4wajcsvde94g74ahdqr2l.png)
![2^(2k+1)2^2+1](https://img.qammunity.org/2020/formulas/mathematics/college/aahiabqzcn83sn8p1wozumzhuoncq8bp00.png)
Using equation (1), we get
![(3n-1)2^2+1](https://img.qammunity.org/2020/formulas/mathematics/college/lp7wyevljefs75mg1i9gll344pxlg5wzfq.png)
![(3n)2^2-2^2+1](https://img.qammunity.org/2020/formulas/mathematics/college/lph383f4c90p6af5gwabcay4uhhvlk55fs.png)
![(3n)2^2-4+1](https://img.qammunity.org/2020/formulas/mathematics/college/8hj1vwj19vgfl5lchh1tjuizad4jekhdk8.png)
![(3n)4-3](https://img.qammunity.org/2020/formulas/mathematics/college/u6y0mtnmobv5uaws750zjsqmdopxpq7pv3.png)
![3(4n-1)](https://img.qammunity.org/2020/formulas/mathematics/college/zbnu2c5m9t0aqzpepaz6hxo43cx86f57bv.png)
This expression is also divisible by 3.
Therefore the given expression is divisible by 3 for all natural values of x.