Answer:
b.
![\Delta KE = 390 eV](https://img.qammunity.org/2020/formulas/physics/college/jzyvgap29pi2nn79eybo7ttf4bgrrdozeo.png)
Step-by-step explanation:
As we know that the electric field due to infinite line charge is given as
![E =(\lambda)/(2\pi \epsilon_0 r)](https://img.qammunity.org/2020/formulas/physics/college/ksx58hjvauo2q29nd1985bn276qlaf61wq.png)
here we can find potential difference between two points using the relation
![\Delta V = \int E.dr](https://img.qammunity.org/2020/formulas/physics/college/7lxj0a0de0cjfurfwo42c5ltxnzuo0yiqt.png)
now we have
![\Delta V = \int((\lambda)/(2\pi \epsilon_0 r)).dr](https://img.qammunity.org/2020/formulas/physics/college/zlk43xky9ogpry2lzmo8e405ypjzqzdx0u.png)
now we have
![\Delta V = (\lambda)/(2\pi \epsilon_0)ln((r_2)/(r_1))](https://img.qammunity.org/2020/formulas/physics/college/wzybt5vugmmt1atyeotvkzirvw07cycbrg.png)
now plug in all values in it
![\Delta V = (12* 10^(-9))/(2\pi \epsilon_0)ln((1+5)/(1))](https://img.qammunity.org/2020/formulas/physics/college/lzo83o56m0f3apcljlkpc3ixl5awovso0y.png)
![\Delta V = 216ln6 = 387 V](https://img.qammunity.org/2020/formulas/physics/college/i7s9v52me41dgqucv8c3w9qy7qd8sinsoe.png)
now we know by energy conservation
![\Delta KE = q\Delta V](https://img.qammunity.org/2020/formulas/physics/college/dsph8cdm9dvkfpzsni64ruhdespj2ncqc2.png)
![\Delta KE = (e)(387V) = 387 eV](https://img.qammunity.org/2020/formulas/physics/college/affw8q1uuakx0brgy5s5yof1n27alfjxyd.png)