131k views
2 votes
Prove that sin^2A/cos^2A + cos^2A/sin^2A = 1/cos^2A*sin^2A - 2

User Chris Vdp
by
7.9k points

2 Answers

4 votes

Answer:

prove that:

Sin²A/Cos²A + Cos²A/Sin²A = 1/Cos²A Sin²A - 2

LHS = \frac{Sin^2A}{Cos^2A} + \frac{Cos^2A}{Sin^2A}

Cos

2

A

Sin

2

A

+

Sin

2

A

Cos

2

A

= \begin{lgathered}= \frac{Sin^4A + Cos^4A}{Cos^2A . Sin^2A}\\\\Using\: a^2 + b^2 = (a+b)^2 - 2ab\\\\a = Cos^2A \: \& \:b = Sin^2A\\\\= \frac{(Sin^2A + Cos^2A)^2 - 2Sin^2A Cos^2A}{Cos^2A Sin^2A} \\\\Sin^2A + Cos^2A = 1\\\\= \frac{1 -2Sin^2A Cos^2A}{Cos^2A Sin^2A}\end{lgathered}

=

Cos

2

A.Sin

2

A

Sin

4

A+Cos

4

A

Usinga

2

+b

2

=(a+b)

2

−2ab

a=Cos

2

A&b=Sin

2

A

=

Cos

2

ASin

2

A

(Sin

2

A+Cos

2

A)

2

−2Sin

2

ACos

2

A

Sin

2

A+Cos

2

A=1

=

Cos

2

ASin

2

A

1−2Sin

2

ACos

2

A

\begin{lgathered}= \frac{1}{Cos^2A Sin^2A} - 2\\\\= RHS\end{lgathered}

=

Cos

2

ASin

2

A

1

−2

=RHS

LHS=RHS

User Sparragus
by
7.8k points
6 votes

Answer:

see explanation

Explanation:

Using the trigonometric identity

sin²A + cos²A = 1

Consider the left side


(sin^2A)/(cos^2A) +
(cos^2A)/(sin^2A)

=
(sin^2A)/(1-sin^2A) +
(cos^2A)/(1-cos^2A)

=
(sin^2A(1-cos^2A)+cos^2A(1-sin^2A))/((1-sin^2A)(1-cos^2A)\\)

=
(sin^2A-sin^2Acos^2A+cos^2A-sin^2Acos^2A)/(1-sin^2A-cos^2A+sin^2Acos^2A)

=
(sin^2A+cos^2A-2sin^2Acos^2A)/(1-(sin^2A+cos^2A)+sin^2Acos^2A)

=
(1-2sin^2Acos^2A)/(sin^2Acos^2A)

=
(1)/(sin^2Acos^2A) -
(2sin^2Acos^2A)/(sin^2Acos^2A)

=
(1)/(sin^2Acos^2A) - 2 = right side ⇒ proven

User Tzerb
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories