Final answer:
To calculate the magnitude of the torque, use the formula τ = r * F * sin(θ), where r is the lever arm length (0.25 m), F is the force applied (40 N), and θ is the angle between force and lever arm (135°). The sine of 135° provides the necessary component of the force that contributes to the torque.
Step-by-step explanation:
The question deals with the concept of torque in physics, particularly how torque is influenced by the angle at which a force is applied. Torque (τ) is the product of the force (F) applied, the distance (r) from the pivot point to the point where the force is applied, and the sine of the angle (θ) between the force vector and the lever arm, which can be represented as τ = r * F * sin(θ). Given that a force of 40 N is applied to the 0.25-meter-long wrench at a 135-degree angle to the wrench, the magnitude of the torque can be calculated using this formula.
Using the provided equation:
- Torque = radius * force * sin(angle)
Torque= 0.25 m * 40 N * sin(135°) = 0.25 m * 40 N * sin(135°)
Here, sin(135°) is a positive value since 135° is in the second quadrant where sine values are positive. It is important to note that the angle must be converted to radians or the correct sine value must be used if the calculator is set to degrees. The calculated torque will have the unit of Newton-meters (N.m).