62.1k views
4 votes
Atmospheric air at 25 °C and 8 m/s flows over both surfaces of an isothermal (179C) flat plate that is 2.75m long. Determine the heat transfer rate per unit from the plate for 3 width different values of the critical Reynolds number: 100,000; 500,000; and 1,000,000

1 Answer

7 votes

Answer:

Re=100,000⇒Q=275.25
(W)/(m^2)

Re=500,000⇒Q=1,757.77
(W)/(m^2)

Re=1,000,000⇒Q=3060.36
(W)/(m^2)

Step-by-step explanation:

Given:

For air
T_∞=25°C ,V=8 m/s

For surface
T_s=179°C

L=2.75 m ,b=3 m

We know that for flat plate


Re<30*10^5⇒Laminar flow


Re>30*10^5⇒Turbulent flow

Take Re=100,000:

So this is case of laminar flow


Nu=0.664Re^{(1)/(2)}Pr^{(1)/(3)}

From standard air property table at 25°C

Pr= is 0.71 ,K=26.24
* 10^(-3)

So
Nu=0.664* 100,000^{(1)/(2)}* 0.71^{(1)/(3)}

Nu=187.32 (
(hL)/(K_(air)))

187.32=
(h*2.75)/(26.24* 10^(-3))

⇒h=1.78
(W)/(m^2-K)

heat transfer rate =h
(T_∞-T_s)

=275.25
(W)/(m^2)

Take Re=500,000:

So this is case of turbulent flow


Nu=0.037Re^{(4)/(5)}Pr^{(1)/(3)}


Nu=0.037* 500,000^{(4)/(5)}* 0.71^{(1)/(3)}

Nu=1196.18 ⇒h=11.14
(W)/(m^2-K)

heat transfer rate =h
(T_∞-T_s)

=11.14(179-25)

= 1,757.77
(W)/(m^2)

Take Re=1,000,000:

So this is case of turbulent flow


Nu=0.037Re^{(4)/(5)}Pr^{(1)/(3)}


Nu=0.037* 1,000,000^{(4)/(5)}* 0.71^{(1)/(3)}

Nu=2082.6 ⇒h=19.87
(W)/(m^2-K)

heat transfer rate =h
(T_∞-T_s)

=19.87(179-25)

= 3060.36
(W)/(m^2)

User Josh Gallagher
by
5.3k points