Step-by-step explanation:
Mass of ball A,
![m_A=7\ kg](https://img.qammunity.org/2020/formulas/physics/college/gnjbc1od0eeurj22nwl7bzs32ouxzzw7f0.png)
Mass of ball B,
![m_B=3\ kg](https://img.qammunity.org/2020/formulas/physics/college/o8yyi9bbtwm043c4icc6upqoip0xl7ojcw.png)
Initial velocity of ball A,
![u_A=12\ m/s](https://img.qammunity.org/2020/formulas/physics/college/hbq5cvlxkjqjqdw2hsrhmny6fnt7v1y6pe.png)
Initial velocity of ball B,
![u_B=-1\ m/s](https://img.qammunity.org/2020/formulas/physics/college/wjv0cg3rwlrfyd3b879l7ta0c9kztw54cx.png)
We need to find the final velocity of each ball. For a perfectly elastic collision, the coefficient of restitution is equal to 1. It is given by :
![e=(v_B-v_A)/(u_A-u_B)](https://img.qammunity.org/2020/formulas/physics/college/xv2mocnu6mlk0jfcktjysz1yai48xrqk2e.png)
are final velocities of ball A and B
![1=(v_B-v_A)/(13)](https://img.qammunity.org/2020/formulas/physics/college/rig072rbaa48invmjlgdr8lg37kg0851h2.png)
...........(1)
Using the conservation of linear momentum as :
![m_Au_A+m_Bu_B=m_Av_A+m_Bu_B](https://img.qammunity.org/2020/formulas/physics/college/cbr3edbugufqhccgnt39r10jchryce4x0h.png)
![7(12)+3(-1)=7v_A+3u_B](https://img.qammunity.org/2020/formulas/physics/college/2amfd4x0lsq1w1zmf97epj73gxzamkgd8t.png)
..............(2)
On solving equation (1) and (2) using calculator we get :
![v_A=4.2\ m/s](https://img.qammunity.org/2020/formulas/physics/college/3ag9c0mfmfmgzz9izrahswr8h9jdxvowvu.png)
![v_B=17.2\ m/s](https://img.qammunity.org/2020/formulas/physics/college/9dmpasn9b3vzup3zbox5lca49bj9l6ok2f.png)
So, the final velocities of ball A and B are 4.2 m/s and 17.2 m/s. Hence, this is the required solution.