Answer : The activation energy for the reaction is, 1.151 KJ
Explanation :
According to the Arrhenius equation,
![K=A* e^{(-Ea)/(RT)}](https://img.qammunity.org/2020/formulas/chemistry/college/pmkqkni0a9qzumfcmdu8y6ars2i5a153qe.png)
or,
![\log ((K_2)/(K_1))=(Ea)/(2.303* R)[(1)/(T_1)-(1)/(T_2)]](https://img.qammunity.org/2020/formulas/chemistry/college/n4xcj74485qvk235cd8fhqu0rg9bb3z2n1.png)
where,
= rate constant at
=
![0.0796M^(-1)s^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/q83198mdm7fgfawwk4vlky9pmi77qa0enw.png)
= rate constant at
=
![0.0815M^(-1)s^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/mfhvngzhj6zqjikagt85z4co0a3wfg99x1.png)
= activation energy for the reaction = ?
R = gas constant = 8.314 J/mole.K
= initial temperature =
![737^oC=273+737=1010K](https://img.qammunity.org/2020/formulas/chemistry/college/b28sygwv2jlui91wp45oqb2mgg3wt1aulr.png)
= final temperature =
![947^oC=273+947=1220K](https://img.qammunity.org/2020/formulas/chemistry/college/agh3rngxbxnub3jxoh66m0ulsha7804ogl.png)
Now put all the given values in this formula, we get:
![\log ((0.0815M^(-1)s^(-1))/(0.0796M^(-1)s^(-1)))=(Ea)/(2.303* 8.314J/mole.K)[(1)/(1010K)-(1)/(1220K)]](https://img.qammunity.org/2020/formulas/chemistry/college/3prm6d3lwnmtsiu3ig2ukbrejvdx9wfn30.png)
![Ea=1151.072J/mole=1.151KJ](https://img.qammunity.org/2020/formulas/chemistry/college/y942kklpzn4qklggxj18i4cyzrvkgf0ibl.png)
Therefore, the activation energy for the reaction is, 1.151 KJ