Answer: 0.0136
Explanation:
Given : Mean :
![\mu=\ 25](https://img.qammunity.org/2020/formulas/mathematics/college/vsnp9cseudydsic7ay5u1h9tvvhutc8su2.png)
Standard deviation :
![\sigma= 3.2](https://img.qammunity.org/2020/formulas/mathematics/college/898bj7gzen7cxjymjbbjo0yqhcqes8qee0.png)
Sample size :
![n=50](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nnexb9qbq36dimlsnj0s4k9my3yakd3pxe.png)
The formula to calculate the z-score :-
![z=(x-\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2020/formulas/mathematics/college/kv4zbzwta1cei225xptycu57ns4dmxgoss.png)
For x = 24
![z=(24-25)/((3.2)/(√(50)))=-2.20970869121\aprox-2.21](https://img.qammunity.org/2020/formulas/mathematics/college/dxwnu3tuqxdgdn337pstif7179r5oxliwp.png)
The P-value =
![P(z\leq24)=0.0135526\approx0.0136](https://img.qammunity.org/2020/formulas/mathematics/college/iamcm99auqp0o47ktn7naq53qbnzbj8e45.png)
Hence, the probability that the sample mean age for 50 randomly selected women to marry is at most 24 years = 0.0136