Answer:
The no of revolutions is 2.032 revolution.
Step-by-step explanation:
Given that,
Moment of inertia = 0.85 Kgm²
Radius = 170 mm
Force = 32 N
Time = 2s
We need to calculate the angular acceleration
Using formula of torque
![\tau=I*\alpha](https://img.qammunity.org/2020/formulas/physics/college/831g99jpzfsrgrr3fsp42cipqvlsetz8io.png)
![\alpha=(\tau)/(I)](https://img.qammunity.org/2020/formulas/physics/college/dhcmz75l9azhjapuk5e29s6wvx9giqmw6a.png)
![\alpha=(F* r)/(I)](https://img.qammunity.org/2020/formulas/physics/college/29hm06hpiyupas2e80gqdfclmpugevuinq.png)
Where, F = force
r = radius
I = moment of inertia
Put the value into the formula
![\alpha=(32*170*10^(-3))/(0.85)](https://img.qammunity.org/2020/formulas/physics/college/9g0stu3txthqlrnkt1lw3jaudn88gqu3uq.png)
![\alpha=6.4\ m/s^2](https://img.qammunity.org/2020/formulas/physics/college/78mxpju0eaczhr0p9r8y2xat03nfqe44c5.png)
We need to calculate the rotational speed
Using equation of angular motion
![\omega_(f)=\omega_(i)+\alpha t](https://img.qammunity.org/2020/formulas/physics/college/bld0htqnwrsx2kxg1eiuoie5kx108v7agu.png)
![\omega_(f)=6.4*2](https://img.qammunity.org/2020/formulas/physics/college/y1idygjk8es2gjstd6eh8j1gqbq1cfn2eh.png)
![\omega=12.8\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/h10x2vqtf4vgyj886nw1b6dlg7qaj1h8sy.png)
We need to calculate the angular position
Using equation of angular motion
![\theta=\omega_(i)+(1)/(2)\alpha t^2](https://img.qammunity.org/2020/formulas/physics/college/hrt1x27efqxcl7gygrf2zbkjgoxyyflh96.png)
![\theta=0+(1)/(2)*6.4*4](https://img.qammunity.org/2020/formulas/physics/college/s7o8obiybb2xnmkiu3x3lzqdmel6w5quki.png)
![\theta=12.8\ radian](https://img.qammunity.org/2020/formulas/physics/college/gqursmq1y5zxmhoy5kb457kb39mhz40y3a.png)
We need to calculate no of revolutions
![n = (\theta)/(2\pi)](https://img.qammunity.org/2020/formulas/physics/college/vb4auas8ebnhjhwxyz0xq417dbnnjgvtd0.png)
![n=(12.8)/(2*3.15)](https://img.qammunity.org/2020/formulas/physics/college/glhhvdscgqp73gyg2g9f1bpj6upqli9e54.png)
![n=2.032\ revolution](https://img.qammunity.org/2020/formulas/physics/college/iakkssj31itq6ylm7glsw7iemihvpbjfuq.png)
Hence, The no of revolutions is 2.032 revolution.