Answer:
The focal length of the lens and the height of the image are -6.86 cm and -0.638 cm.
Step-by-step explanation:
Given that,
Distance of the object u = -16.0 cm
Distance of the image v = -12.0 cm
Height of the object = 8.50 mm = 0.85 cm
(a). We need to calculate the focal length
Using lens's formula
![(1)/(f)=(1)/(u)+(1)/(v)](https://img.qammunity.org/2020/formulas/physics/college/l6tvnx97v8slcdrtdyf9h91h6ihgi90y8g.png)
Where, f = focal length
u = distance of the object
v = distance of the image
Put the value into the formula
![(1)/(f)=(1)/(-16.0)+(1)/(-12.0)](https://img.qammunity.org/2020/formulas/physics/college/klr18kkbtjlf8wnsvoj8gccgh8uz63wzym.png)
![(1)/(f)=-(7)/(48)](https://img.qammunity.org/2020/formulas/physics/college/g46lf4tmrqsq9fng3as97y2fk44cflmyzk.png)
![f=-(48)/(7)](https://img.qammunity.org/2020/formulas/physics/college/25t71nihdios3zsobcf8sxs4u3gyxh1zyb.png)
![f=-6.86\ cm](https://img.qammunity.org/2020/formulas/physics/college/vdwohlybj0hu34xzslw0jsz6ssoz4o33d3.png)
The lens is diverging.
(b). Using formula of magnification
![m=-(v)/(u)](https://img.qammunity.org/2020/formulas/physics/college/rc1z1hoeiz2g2m9v2q2joztjmoy97dw2cd.png)
![-(v)/(u)=(h')/(h)](https://img.qammunity.org/2020/formulas/physics/college/wakzjgmrkwmf8y6quc4sfxl36ld6xea1wd.png)
Put the value in to the formula
![-(12.0)/(16.0)=(h')/(0.85)](https://img.qammunity.org/2020/formulas/physics/college/sysd1sdu699iz7pig7cza3ynoqzp1k9um3.png)
![h'=-(12.0*0.85)/(16.0)](https://img.qammunity.org/2020/formulas/physics/college/lrn3vvooadl3q32eq2iwgrdceux6t98bkd.png)
![h'=-0.638\ cm](https://img.qammunity.org/2020/formulas/physics/college/vz9ushosj78gmfg5z6xfddh4tivig1a5eu.png)
The image is inverted.
Hence, The focal length of the lens and the height of the image are -6.86 cm and -0.638 cm.