Answer:
The correct option is C.
Explanation:
If (x-c) is a factor of a polynomial f(x), then f(c)=0.
It is given that (x-1) is a factor of the polynomial. It means the value of the function at x=1 is 0.
In option A,
The given function is
![p(x)=x^3+x^2-2x+1](https://img.qammunity.org/2020/formulas/mathematics/college/5wfypj9qrnun5h3u9rb27z6v63t9yvj3cv.png)
Substitute x=1 in the given function.
![p(1)=(1)^3+(1)^2-2(1)+1=1+1-2+1=1](https://img.qammunity.org/2020/formulas/mathematics/college/ae0r2oru0ou7mm3oh7udpiqrji11s1ocof.png)
Since p(1)≠0, therefore option A is incorrect.
In option B,
The given function is
![q(x)=2x^3-x^2+x-1](https://img.qammunity.org/2020/formulas/mathematics/college/cpufmvkzeczppv6s382syqpr3wfz8en6q4.png)
Substitute x=1 in the given function.
![q(1)=2(1)^3-(1)^2+(1)-1=2-1+1-1=1](https://img.qammunity.org/2020/formulas/mathematics/college/p4jmron8nhddacqkzm1oy0tufxunhwtxpz.png)
Since q(1)≠0, therefore option B is incorrect.
In option C,
The given function is
![r(x)=3x^3-x-2](https://img.qammunity.org/2020/formulas/mathematics/college/52qnmoov8r2obrc2e7r44xccf5shpayedx.png)
Substitute x=1 in the given function.
![r(1)=3(1)^3-(1)-2=3-1-2=0](https://img.qammunity.org/2020/formulas/mathematics/college/yphfjg04vxxa185tc6vt80pbex2jhqo4wd.png)
Since r(1)=0, therefore option C is correct.
In option D,
The given function is
![s(x)=-3x^3+3x+1](https://img.qammunity.org/2020/formulas/mathematics/college/hraaftikcts0h4n89zkc07dn79ihsak54p.png)
Substitute x=1 in the given function.
![s(1)=-3(1)^3+3(1)+1=-3+3+1=1](https://img.qammunity.org/2020/formulas/mathematics/college/i4juyfz0kh7ifuhkhtm55c3548v8u6u2b5.png)
Since s(1)≠0, therefore option D is incorrect.