186k views
2 votes
3. Let U and V be subspaces of a vector space W. Prove that their intersection UnV is also a subspace of W

User Tim Malich
by
8.5k points

1 Answer

6 votes

Answer: The proof is done below.

Step-by-step explanation: Given that U and V are subspaces of a vector space W.

We are to prove that the intersection U ∩ V is also a subspace of W.

(a) Since U and V are subspaces of the vector space W, so we must have

0 ∈ U and 0 ∈ V.

Then, 0 ∈ U ∩ V.

That is, zero vector is in the intersection of U and V.

(b) Now, let x, y ∈ U ∩ V.

This implies that x ∈ U, x ∈ V, y ∈ U and y ∈ V.

Since U and V are subspaces of U and V, so we get

x + y ∈ U and x + y ∈ V.

This implies that x + y ∈ U ∩ V.

(c) Also, for a ∈ R (a real number), we have

ax ∈ U and ax ∈ V (since U and V are subspaces of W).

So, ax ∈ U∩ V.

Therefore, 0 ∈ U ∩ V and for x, y ∈ U ∩ V, a ∈ R, we have

x + y and ax ∈ U ∩ V.

Thus, U ∩ V is also a subspace of W.

Hence proved.

User DaWe
by
7.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories