211k views
0 votes
An object essentially at infinity is moved to a distance of 90 cm in front of a thin positive lens. In the process its image distance triples. Determine the focal length of the lens.

2 Answers

6 votes

Final answer:

To determine the focal length of the lens, we use the lens formula and set up an equation based on the given information. Solving for the image distance, we find that it is zero, indicating the image is formed at infinity. Therefore, the focal length of the lens is 90 cm.

Step-by-step explanation:

To determine the focal length of the lens, we can use the lens formula:

1/f = 1/v - 1/u

Where f is the focal length, v is the image distance, and u is the object distance.

Given that the image distance triples when the object is moved from infinity to 90 cm in front of the lens, we can set up the following equation:

1/f = 1/(3v) - 1/(90)

Multiplying through by 90*3v, we get:

90*3v/f = 270v - 90*3v

90*3v/f = 270v - 270v

90*3v/f = 0

Simplifying further, we find that: v = 0

When the image distance is zero, it means the image is formed at infinity, so the lens is focused at the focal point. Therefore, the focal length of the lens is 90 cm.

User Grizzley
by
5.9k points
6 votes

Answer:

67.5 cm

Step-by-step explanation:

u = - 90 cm, v = 3 x u = 3 x 90 = 270 cm

let f be the focal length

Use lens equation

1 / f = 1 / v - 1 / u

1 / f = 1 / 270 + 1 / 90

1 / f = 4 / 270

f = 67.5 cm

User Morgan Herlocker
by
5.4k points