I'm guessing you intended to say
has mean
and standard deviation
, and
has means
and standard deviation
.
If
, then
has mean
![E[W]=E[X+Y]=E[X]+E[Y]=55](https://img.qammunity.org/2020/formulas/mathematics/college/vwu3vh7zi4vhpvod555wo7he01gcxdb9iz.png)
and variance
![\mathrm{Var}[W]=E[(W-E[W])^2]=E[W^2]-E[W]^2](https://img.qammunity.org/2020/formulas/mathematics/college/1id5wr2dyqu6vrbyqow24uqi5zu6n0jpop.png)
Given that
and
, we have
![\mathrm{Var}[X]=E[X^2]-E[X]^2\implies E[X^2]=36+25^2=661](https://img.qammunity.org/2020/formulas/mathematics/college/m8so9m8pt6h4h2o6kwz4pjhqride5uvuxy.png)
![\mathrm{Var}[Y]=E[Y^2]-E[Y]^2\implies E[Y^2]=16+30^2=916](https://img.qammunity.org/2020/formulas/mathematics/college/zg87oasht6oxpc49aihjoi91szswr10ktr.png)
Then
![E[W^2]=E[(X+Y)^2]=E[X^2]+2E[XY]+E[Y^2]](https://img.qammunity.org/2020/formulas/mathematics/college/6zm5m7ftto5ladjqq4fdn6l024tnqcv1e7.png)
and
are independent, so
, and
![E[W^2]=E[X^2]+2E[X]E[Y]+E[Y^2]=661+2\cdot25\cdot30+916=3077](https://img.qammunity.org/2020/formulas/mathematics/college/bwl61z9i6isjt2mw0jdjik7m85kedvmr1m.png)
so that the variance, and hence standard deviation, are
![\mathrm{Var}[W]=3077-55^2=52](https://img.qammunity.org/2020/formulas/mathematics/college/m8kwyml2b4figldrwcucczsss0nqpg73jw.png)
![\implies\sqrt{\mathrm{Var}[W]}=√(52)=\boxed{2√(13)}](https://img.qammunity.org/2020/formulas/mathematics/college/15cfbaph5lw9dx2umzo2qj0ec11rwlja3x.png)
# # #
Alternatively, if you've already learned about the variance of linear combinations of random variables, that is
![\mathrm{Var}[aX+bY]=a^2\mathrm{Var}[X]+b^2\mathrm{Var}[Y]](https://img.qammunity.org/2020/formulas/mathematics/college/5jjbew5ft6j2apiu6c5uhcilds1f15v71y.png)
then the variance of
is simply the sum of the variances of
and
,
, and so the standard deviation is again
.