Answer:
The value of the greater number is 30.
Explanation:
We need to find the values of x that satisfy the equation :
![x(x-5)=750](https://img.qammunity.org/2020/formulas/mathematics/high-school/9t2uo0ddoodh1tmxjw8iuion6m7lf92zi0.png)
Working with the equation ⇒
![x(x-5)=750](https://img.qammunity.org/2020/formulas/mathematics/high-school/9t2uo0ddoodh1tmxjw8iuion6m7lf92zi0.png)
![x^(2)-5x=750](https://img.qammunity.org/2020/formulas/mathematics/high-school/uhyqwbrn0edzdj0s3socmj30oyzrri0k0b.png)
![x^(2)-5x-750=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/p2kqdx2bfhh57ca6jq2tyuui53z9e59rwq.png)
Given an equation with the form
![ax^(2)+bx+c=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/h24obe3uowcmp1bgdoma9cnvia5ctj7260.png)
We can use the quadratic equation to find the values of x
and
![x2=\frac{-b-\sqrt{b^(2)-4ac}}{2a}](https://img.qammunity.org/2020/formulas/mathematics/high-school/dcm49ao0yu6z7a9wqusk8l34kauo48be5s.png)
With
we replace in the equations of x1 and x2 ⇒
![x1=\frac{-(-5)+\sqrt{(-5)^(2)-4.(1).(-750)}}{2.(1)}=30](https://img.qammunity.org/2020/formulas/mathematics/high-school/oobvlk7p97wk1qbpz08ei4zlhe3mqx9est.png)
is a solution of the equation
![x^(2)-5x-750=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/p2kqdx2bfhh57ca6jq2tyuui53z9e59rwq.png)
Now for x2 ⇒
![x2=\frac{-(-5)-\sqrt{(-5)^(2)-4.(1).(-750)}}{2.(1)}=-25](https://img.qammunity.org/2020/formulas/mathematics/high-school/rtq7wu746190wllbuar8yy6yyr0zyml14c.png)
is a solution of the equation
![x^(2)-5x-750=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/p2kqdx2bfhh57ca6jq2tyuui53z9e59rwq.png)
Given that both numbers are positive ⇒
and
Therefore, x2 is not a possible value for the greater number
The greater number is
![x1=30](https://img.qammunity.org/2020/formulas/mathematics/high-school/9p26bw0k88cg05d6luv93jm5x166a90bhd.png)