Explanation:
The formula of a volume of a pyramid:
![V=(1)/(3)BH](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rxhl9rovuwjs4erevg0exnjml1tcl1uxyg.png)
B - base area
H - height
H - height of pyramids
Pyramid A:
![B=(10)(2)=200\ m^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ecm2s5maorn2z67wuarau9huij2n3hnvgh.png)
![V_A=(1)/(3)(200)H=(200)/(3)H\ m^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h7ranpdzdvyqa2161m8f2u7h9e5cw6xscv.png)
Pyramid B:
![B=10^2=100\ m^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2fjyoulcvy9lo6bypu19z8m7rku10nhmh7.png)
![V_B=\dfraC{1}{3}(100)H=(100)/(3)H\ m^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z1vdp05r63nb2t95wfa1bkeu9466rhnnu7.png)
![V_A>V_B\\\\V_A=2V_B](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rr3hk3wswaz0pci5zhiaptjwc5i44e03yf.png)
The volume of the pyramid A is twice as large as the volume of the pyramid B.
The new height of pyramid B: 2H
The new volume:
![V_(B')=(1)/(3)(100)(2H)=(200)/(3)H\ m^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/61cq6wkikzs1vcoee2w15ps1nnafnmhydu.png)
The volume of the pyramid A is equal to the volume of the pyramid B.