Answer:
![(6x^2+3)/(2x^3+3x)](https://img.qammunity.org/2020/formulas/mathematics/college/d5fi3rcqxdrkwdztx16j5cb3lw6ulqkckj.png)
Explanation:
You need to apply the chain rule here.
There are few other requirements:
You will need to know how to differentiate
.
You will need to know how to differentiate polynomials as well.
So here are some rules we will be applying:
Assume
![u=u(x) \text{ and } v=v(x)](https://img.qammunity.org/2020/formulas/mathematics/college/pfr3mwcx0qgaqygv8r014nznqy7yay1zsv.png)
![(d)/(dx)\ln(u)=(1)/(u) \cdot (du)/(dx)](https://img.qammunity.org/2020/formulas/mathematics/college/93zmdmmzcf1pdqth9m11lm5nedp4kvpaij.png)
![\text{ power rule } (d)/(dx)x^n=nx^(n-1)](https://img.qammunity.org/2020/formulas/mathematics/college/lfskvt6dh1j4k8e19413bpqidj9omguz21.png)
![\text{ constant multiply rule } (d)/(dx)c\cdot u=c \cdot (du)/(dx)](https://img.qammunity.org/2020/formulas/mathematics/college/a08vi6n4f0iul624ef1m2m0pofvv2drhxn.png)
![\text{ sum/difference rule } (d)/(dx)(u \pm v)=(du)/(dx) \pm (dv)/(dx)](https://img.qammunity.org/2020/formulas/mathematics/college/d13vc5bfqy7kjl5jl6a6m20wyphb4fxwva.png)
Those appear to be really all we need.
Let's do it:
![(d)/(dx)\ln(2x^3+3x)=(1)/(2x^3+3x) \cdot (d)/(dx)(2x^3+3x)](https://img.qammunity.org/2020/formulas/mathematics/college/gqu97kkwygsoth26bj7v6sfv1y0wukrzex.png)
![(d)/(dx)(\ln(2x^3+3x)=(1)/(2x^3+3x) \cdot ((d)/(dx)(2x^3)+(d)/(dx)(3x))](https://img.qammunity.org/2020/formulas/mathematics/college/riugeldhqsfq2r4b1i0j2y13fcgipiku61.png)
![(d)/(dx)(\ln(2x^3+3x)=(1)/(2x^3+3x) \cdot (2 \cdot (dx^3)/(dx)+3 \cdot (dx)/(dx))](https://img.qammunity.org/2020/formulas/mathematics/college/trtt9x5y53ual4l90fpadzjqvx5knufoiy.png)
![(d)/(dx)(\ln(2x^3+3x)=(1)/(2x^3+3x) \cdot (2 \cdot 3x^2+3(1))](https://img.qammunity.org/2020/formulas/mathematics/college/iwyoqkcme0qmt9nmfuilkfdd11dgfgwbc1.png)
![(d)/(dx)(\ln(2x^3+3x)=(1)/(2x^3+3x) \cdot (6x^2+3)](https://img.qammunity.org/2020/formulas/mathematics/college/h76htt0dimwpk4ecbe0bknyxi9bawzax9g.png)
![(d)/(dx)(\ln(2x^3+3x)=(6x^2+3)/(2x^3+3x)](https://img.qammunity.org/2020/formulas/mathematics/college/t2heokyzjr3lv80gbnczamrtpz5vh75471.png)
I tried to be very clear of how I used the rules I mentioned but all you have to do for derivative of natural log is derivative of inside over the inside.
Your answer is
.