, and
. Subtract this from
to get a remainder of
![(4x^5-3x^3+2x-1)-(4x^5-8x^4)=8x^4-3x^3+2x-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/paw6jcqjgre0b67278r7xesj4vr4tqjq5w.png)
, and
. Subtract this from the previous remainder to get a new remainder of
![(8x^4-3x^3+2x-1)-(8x^4-16x^3)=13x^3+2x-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mmxol1sptvrveo8i9y14pbvurunwdvmyeg.png)
, and
. Subtract this from the previous remainder to get a new remainder of
![(13x^3+2x-1)-(13x^3-26x^2)=26x^2+2x-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nvn57mso3hlb7fd9cxw4209qp9m7eoqfc2.png)
, and
. Subtract this from the previous remainder to get a new remainder of
![(26x^2+2x-1)-(26x^2-52x)=54x-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qn94w6y9ld6dnbhpa0mj01bn7hnneewo65.png)
does not divide
, so we're done, and we've found that
![(4x^5-3x^3+2x-1)/(x^2-2x)=4x^3+(8x^4-3x^3+2x-1)/(x^2-2x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/if4hfcso0y6mbzn8vu6yjrzthhi5n35xjh.png)
![(4x^5-3x^3+2x-1)/(x^2-2x)=4x^3+8x^2+(13x^3+2x-1)/(x^2-2x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s8q072b7nqh1jz5hw9i7kgt4kneu4wcycm.png)
![(4x^5-3x^3+2x-1)/(x^2-2x)=4x^3+8x^2+13x+(26x^2+2x-1)/(x^2-2x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1pel96jm2sr97tnoziimvtl81xstma0idh.png)
![(4x^5-3x^3+2x-1)/(x^2-2x)=\boxed{4x^3+8x^2+13x+26+(54x-1)/(x^2-2x)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ni8uyzvu3tpq3cpc28jtimzdo1d0rqpfnw.png)