54.5k views
4 votes
What is the value of cosC AB=8 BC=15 CA=17

User Jyablonski
by
5.7k points

1 Answer

3 votes

Answer:

The value of cos C = 15/17

Explanation:

* Lets revise the cosine rule

- In Δ ABC

# AB opposite to angle C

# BC opposite to angle A

# AC opposite to angle B

# ∠A between AB and AC

# ∠B between BA and BC

# ∠C between CA and CB

- Cosine rule is:

# AB² = AC² + BC² - 2(AC)(BC) cos∠C

# BC² = AC² + AB² - 2(AC)(AB) cos∠A

# AC² = AB² + BC² - 2(AB)(BC) cos∠B

* Lets solve the problem

∵ AB = 8 units

∵ BC = 15 units

∵ CA = 17 units

∵ AB² = AC² + BC² - 2(AC)(BC) cos∠C

- Add 2(AC)(BC) cos∠C to both sides

∴ AB² + 2(AC)(BC) cos∠C = AC² + BC²

- Subtract AB² from both sides

∴ 2(AC)(BC) cos∠C = AC² + BC² - AB²

- Divide two sides by 2(AC)(BC)

∴ cos∠C = (AC² + BC² - AB²)/2(AC)(BC)

- Substitute the values of AB , BC , AC to find cos∠C

∴ cos∠C = (17)² + (15)² - (8)²/2(17)(15)

∴ cos∠C = (289 + 225 - 64)/510

∴ cos∠C = 450/510 = 15/17

* The value of cos C = 15/17