107k views
1 vote
Dopamine is available as 400 mg in 250 mL of D5W. A 2 year old weighing 12 kg is receiving 10 mcg/kg/min. How many hours will the infusion last?

User Natronite
by
8.1k points

1 Answer

4 votes

Answer:

55.5556 hours.

Explanation:

Let's solve the problem.

The amount of dopamine rate applied to a person is based on the formula: 10mcg/kg/min. Such relation can be express as follows:

(10mcg/kg/min)=

(10mcg/kg)*(1/min)

Now by multiplying by the weight (12 kg) of the 2 years old person, we have:

(10mcg/kg)*(1/min)*(12kg)=

(10mcg*12kg/kg)*(1/min)=

(120mcg)*(1/min)=

120mcg/min, which is the rate of dopamine infusion, which can be express as:

(120mcg/min)*(60min/1hour)=

(120mcg*60min)/(1hour*1min)=

7200mcg/hour=

1hour/7200mcg, which means that for each hour, 7200mcg dopamine are infused.

Because the D5W product has 400 mg of dopamine, then we need to convert 400 mg to X mcg of dopamine in order to use the previous obtained rate. This means:

Because 1mcg=0.001mg then:

(400mg)*(1mcg/0.001mg)=

(400mg*1mcg)/(0.001mg)=

400000mcg, which is the amount of dopamine in D5W.

Now, using the amount of dopamine in D5W and the applied rate we have:

(rate)*(total amount of dopamine)=hours of infusion

(1hour/7200mcg)*(400000mcg)=hours of infusion

(1hour*400000mcg)/(7200mcg)=hours of infusion

(55.5556 hours) =hours of infusion

In conclusion, the infusion will last 55.5556 hours.

User Akshit Rewari
by
7.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories