The vertices of the triangle are the points where any pair of lines intersect.
We start by setting up the system
![\begin{cases}y=-x+2\\y=2x-1 \end{cases} \iff -x+2=2x-1 \iff 3x=3 \iff x=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t1jghph0g08cnwlhubxd2rtkakjdoevopt.png)
Using one of the two equations we can derive the correspondent y value:
![f(x)=-x+2 \implies f(1)=-1+2 = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mp1f2bthf77uqqteu0b73688v5ej10v18x.png)
So, one vertex is (1, 1)
We choose the other two pairs of lines to find the other vertices:
![\begin{cases}y=-x+2\\y=x-2 \end{cases} \iff -x+2=x-2 \iff x=2 \implies y = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cumtp3e3cyw1bqxlm3i09z8gg1at0k26jp.png)
![\begin{cases}y=x-2\\y=2x-1 \end{cases} \iff x-2=2x-1 \iff x=-1 \implies y=-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pi7re4imvmxmjd2cmmxp8924aamnkx0m9k.png)
So, the three vertices are (1, 1), (2, 0), (-1, -3).