Answer:
The inverse of h(x) is
![(5x-6)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/1u3323scfomni5m01741y3mivyiqlgoitu.png)
Explanation:
* Lets explain how to make the inverse of a function
- To find the inverse of a function we switch x and y and then solve
for new y
- You can make it with these steps
# write g(x) = y
# switch x and y
# solve for y
# write y as
![g^(-1)(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tiwnn69u82yjce64ja67vj5rjk0ng893a4.png)
* Lets solve the problem
∵
![h(x)=(2x+6)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/o2ofwtxffa8h93zqeyhsrhyfbldrua5tvc.png)
# Step 1
∴
![y=(2x+6)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/rx7zzpn60itd8hci5sy7dax9yaxuyqvvvv.png)
# Step 2
∴
![x=(2y+6)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/6q8pg4efhkfp8pkl14q0aoz6ibmwxs0bov.png)
# Step 3
∵
![x=(2y+6)/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/6q8pg4efhkfp8pkl14q0aoz6ibmwxs0bov.png)
- Multiply each side by 5
∴ 5x = 2y + 6
- Subtract 6 from both sides
∴ 5x - 6 = 2y
- Divide both sides by 2
∴
![y=(5x-6)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/ntcvg4jsirrksvbhlb08lp47m8y2cnqivf.png)
# Step 4
∴
![h^(-1)(x)=(5x-6)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/9mq4kx2q28o4xmmn9u4cdh5oyh59enbvgr.png)