199k views
2 votes
HELPPP!!!

Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.
Match the equations of hyperbolas to their corresponding pairs of vertices.

HELPPP!!! Drag the tiles to the boxes to form correct pairs. Not all tiles will be-example-1

2 Answers

4 votes

Answer:

(x - 3)²/3² - (y + 4)²/2² = 1 ⇒ (0 , -4) , (6 , -4)

(x - 4)²/7² - (y + 6)²/5² = 1 ⇒ (-3 , -6) , (11 , -6)

(y + 5)²/5² - (x - 4)²/8² = 1 ⇒ (4 , 0) , (4 , -10)

(y + 7)²/7² - (x + 2)²/4² = 1 ⇒ (-2 , 0) , (-2 , -14)

(x + 1)²/9² - (y - 1)²/11² = 1 ⇒ (8 , 1) , (-10 , 1)

User Sifat Amin
by
6.2k points
3 votes

Answer:

(x - 3)²/3² - (y + 4)²/2² = 1 ⇒ (0 , -4) , (6 , -4)

(x - 4)²/7² - (y + 6)²/5² = 1 ⇒ (-3 , -6) , (11 , -6)

(y + 5)²/5² - (x - 4)²/8² = 1 ⇒ (4 , 0) , (4 , -10)

(y + 7)²/7² - (x + 2)²/4² = 1 ⇒ (-2 , 0) , (-2 , -14)

(x + 1)²/9² - (y - 1)²/11² = 1 ⇒ (8 , 1) , (-10 , 1)

Explanation:

* Lets revise the standard form of the equations of the hyperbola

- The standard form of the equation of a hyperbola with center (h , k)

and transverse axis parallel to the x-axis is (x - h)²/a² - (y - k)²/b² = 1

- The coordinates of the vertices are (h ± a , k)

- The standard form of the equation of a hyperbola with center (h , k)

and transverse axis parallel to the y-axis is (y - k)²/a² - (x - h)²/b² = 1

- The coordinates of the vertices are (h , k ± a)

* Lets solve the problem

# (x - 3)²/3² - (y + 4)²/2² = 1

∵ (x - h)²/a² - (y - k)²/b² = 1

∴ a = 3 , b = 2 , h = 3 , k = -4

∵ The coordinates of the vertices are (h ± a , k)

∴ The coordinates of the vertices are (3 - 3 , -4) , (3 + 3 , -4)

∴ The coordinates of the vertices are (0 , -4) , (6 , -4)

* (x - 3)²/3² - (y + 4)²/2² = 1 ⇒ (0 , -4) , (6 , -4)

# (y - 1)²/2² - (x - 7)²/6² = 1

∵ (y - k)²/a² - (x - h)²/b² = 1

∴ a = 2 , b = 6 , h = 7 , k = 1

∵ The coordinates of the vertices are (h , k ± a)

∴ The coordinates of the vertices are (7 , 1 - 2) , (7 , 1 + 2)

∴ The coordinates of the vertices are (7 , -1) , (7 , 3)

* No answer for this equation

# (x - 4)²/7² - (y + 6)²/5² = 1

∵ (x - h)²/a² - (y - k)²/b² = 1

∴ a = 7 , b = 5 , h = 4 , k = -6

∵ The coordinates of the vertices are (h ± a , k)

∴ The coordinates of the vertices are (4 - 7 , -6) , (4 + 7 , -6)

∴ The coordinates of the vertices are (-3 , -6) , (11 , -6)

* (x - 4)²/7² - (y + 6)²/5² = 1 ⇒ (-3 , -6) , (11 , -6)

# (y + 5)²/5² - (x - 4)²/8² = 1

∵ (y - k)²/a² - (x - h)²/b² = 1

∴ a = 5 , b = 8 , h = 4 , k = -5

∵ The coordinates of the vertices are (h , k ± a)

∴ The coordinates of the vertices are (4 , -5 + 5) , (4 , -5 - 5)

∴ The coordinates of the vertices are (4 , 0) , (4 , -10)

* (y + 5)²/5² - (x - 4)²/8² = 1 ⇒ (4 , 0) , (4 , -10)

# (y + 7)²/7² - (x + 2)²/4² = 1

∵ (y - k)²/a² - (x - h)²/b² = 1

∴ a = 7 , b = 4 , h = -2 , k = -7

∵ The coordinates of the vertices are (h , k ± a)

∴ The coordinates of the vertices are (-2 , -7 + 7) , (-2 , -7 - 7)

∴ The coordinates of the vertices are (-2 , 0) , (-2 , -14)

* (y + 7)²/7² - (x + 2)²/4² = 1 ⇒ (-2 , 0) , (-2 , -14)

# (x + 1)²/9² - (y - 1)²/11² = 1

∵ (x - h)²/a² - (y - k)²/b² = 1

∴ a = 9 , b = 11 , h = -1 , k = 1

∵ The coordinates of the vertices are (h ± a , k)

∴ The coordinates of the vertices are (-1 + 9 , 1) , (-1 - 9 , 1)

∴ The coordinates of the vertices are (8 , 1) , (-10 , 1)

* (x + 1)²/9² - (y - 1)²/11² = 1 ⇒ (8 , 1) , (-10 , 1)

User Chris Wolf
by
6.6k points