Answer:
Option A (134.7mm)
Explanation:
Let's find the distance, but first we need to remember that the distance between two points with coordinates (Xa,Ya) and (Xb,Yb) is defined by:
![distance = \sqrt{(Xb-Xa)^(2) + (Yb-Ya)^(2) }](https://img.qammunity.org/2020/formulas/mathematics/college/nq623al38jjuix0c8xokyyr0tob1c42v6q.png)
From the situation we notice that:
Xb=31.45 and Xa=65.35, as well as:
Yb=-55.50 and Ya=74.88
Using the previous equation we have:
![distance = \sqrt{(31.45-65.35)^(2) + (-55.50-74.88)^(2) }](https://img.qammunity.org/2020/formulas/mathematics/college/mhwtk1lc5qd77o7xc4d2ecobsl6zsgkp20.png)
![distance = \sqrt{(-33.9)^(2) + (-130.38)^(2) }](https://img.qammunity.org/2020/formulas/mathematics/college/qnzwp180eurlz2ze6yk2ivgez78357uf12.png)
![distance = √(1149.21 + 16998.9444)](https://img.qammunity.org/2020/formulas/mathematics/college/4mwt1mbtjgg4pnr7j47ovdbkorvvcnm8rc.png)
![distance = √(18148.1544)](https://img.qammunity.org/2020/formulas/mathematics/college/wnuzwh6gd5de732lqopgrgfcqjh2673hs1.png)
![distance = 134.7151mm](https://img.qammunity.org/2020/formulas/mathematics/college/bj2j2i09juzw0vmiwlzhqcf8w9oxrsu66i.png)
In conclusion, the distance between points (65.35,74.88) and (31.45,-55.50) is 134.7151mm, which is option A (134.7mm).