Answer:
A. 6.5
Explanation:
First we find the average
of the 9 data:
![\bar{x} =(\sum_(x=1)^(n)x_(i))/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/cgaw7ufjwl76e3g7hpxntdninhhdrmsjjl.png)
Where n is the data number, that in this case is 9.
![\bar{x} =(1+ 2+ 11+ 8+ 16+ 16+20+ 16+ 18)/(9)=12\\](https://img.qammunity.org/2020/formulas/mathematics/college/2aut4rowa3kru9r0v6dp6xqarzcmmnfsyr.png)
The formula of the standard deviation
is:
![\sigma=\sqrt{\frac{\sum_(x=1)^(n)(x_(i)-\bar{x})^(2)}{n}}](https://img.qammunity.org/2020/formulas/mathematics/college/5y3wsafwlw7ddp1fg74dj9en3fs0aib1rt.png)
We replace the data and find the value of the standard deviation:
![\sigma=\sqrt{((1-12)^(2)+(2-12)^(2)+(11-12)^(2)+(8-12)^(2)+(16-12)^(2)+(16-12)^(2)+(20-12)^(2)+(16-12)^(2)+(18-12)^(2))/(9)}](https://img.qammunity.org/2020/formulas/mathematics/college/xn3svxfr17yn71r89wy717w45h99mlv6ce.png)
![\sigma=\sqrt{((-11)^(2)+(-10)^(2)+(-1)^(2)+(-4)^(2)+(4)^(2)+(4)^(2)+(8)^(2)+(4)^(2)+(6)^(2))/(9)}=6,54](https://img.qammunity.org/2020/formulas/mathematics/college/fabcbxgp5en35ewq7gy65jtpfyr11h9x8w.png)
We approximate the number and the solution is 6,5