Answer:
![\large\boxed{y=-(2)/(3)x+(1)/(3)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bvpp57v9da7qdesvoo5e8o59coch9yxbpe.png)
Explanation:
The slope-intercept form of an equation of a line:
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
m - slope
The formula of a slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fc06wy5n2hf2a0hmyba6df4ibmxk1cn53a.png)
===============================================
We have the points (2, -1) and (5, -3). Substitute:
![m=(-3-(-1))/(5-2)=(-2)/(3)=-(2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zub15kxqqax7vzsv9l5o335w45dwgpmchu.png)
We have the equation:
![y=-(2)/(3)x+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uftofvrdl0oeewof9rmhjwrjf9anc710rx.png)
Put the coordinates of the point (2, -1):
![-1=-(2)/(3)(2)+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rhz76w7afv9e84xga3fuqlt39j0ie1tz5n.png)
add 4/3 to both sides
![(1)/(3)=b\to b=(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qdli1ivm9zftckxxtslx75qd6w29pkhhdy.png)
Finally:
![y=-(2)/(3)x+(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k8dtf90p1uswdac1rtrnyp9y4fb10ovjuh.png)